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ABSTRACT
Composing text and image for image retrieval (CTI-IR) is a new yet
challenging task, for which the input query is not the conventional
image or text but a composition, i.e., a reference image and its
corresponding modification text. The key of CTI-IR lies in how to
properly compose the multi-modal query to retrieve the target
image. In a sense, pioneer studies mainly focus on composing
the text with either the local visual descriptor or global feature
of the reference image. However, they overlook the fact that the
text modifications are indeed diverse, ranging from the concrete
attribute changes, like “change it to long sleeves”, to the abstract
visual property adjustments, e.g., “change the style to professional”.
Thus, simply emphasizing the local or global feature of the reference
image for the query composition is insufficient. In light of the
above analysis, we propose a Comprehensive Linguistic-Visual
Composition Network (CLVC-Net) for image retrieval. The core of
CLVC-Net is that it designs two composition modules: fine-grained
local-wise composition module and fine-grained global-wise com-
position module, targeting comprehensive multi-modal composi-
tions. Additionally, a mutual enhancement module is designed
to promote local-wise and global-wise composition processes by
forcing them to share knowledge with each other. Extensive
experiments conducted on three real-world datasets demonstrate
the superiority of our CLVC-Net. We released the codes to benefit
other researchers.
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I want to change it to 

longer sleeves and 

yellow in color.

I want the dress to be 

more elegant and less 

revealing.

I want the dress to 

be black and more 

professional.

(a)

(b)

(c)

Figure 1: Three examples of composing text and image for image
retrieval.
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1 INTRODUCTION
Image retrieval [9, 18, 19, 28, 29] refers to retrieving images that
meet the user’s search intent. Traditional image retrieval systems
only allow users to use either the text or image query to express
their search intent. However, in many cases, it is intractable for
users to describe their search intent via a single textual query,
meanwhile it is also difficult for users to find the ideal images to
exactly convey their intent. Consequently, to allow users to flexibly
express their search intent, composing text and image for image
retrieval (CTI-IR) [37] is recently proposed and gaining increasing
research attention.

As illustrated in Figure 1, the input of CTI-IR is a multi-modal
query, i.e., a reference image plus a modification text. Notably, the
text input is not the corresponding description of the given image
but some modification intent on it. In light of this, the key to CTI-IR
lies in how to properly compose the multi-modal query to retrieve
the target image. According to the multi-modal composition
manner, existing efforts can be broadly classified into two groups:
local-wise [4, 16, 42] and global-wise [37] composition methods. The
former focuses on composing the modification text with the local
visual descriptors, e.g., feature maps, whereas the latter emphasizes
the global feature of the reference image. Although existing
researches have achieved promising results, they overlook the fact
that the modifications are indeed diverse, spanning from concrete
attribute changes to abstract visual property adjustments. We take
the fashion-oriented image retrieval as an example, which is one
of the most promising application scenarios for CTI-IR. Intuitively,
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for the concrete attribute changes, like the modification need of
longer sleeves in Figure 1(a), it is reasonable to give priority to the
local representation of the reference image. In contrast, regarding
abstract visual property modifications, like that in Figure 1(b), it
seems that operating over the global representation of the reference
image is more suitable. Meanwhile, Figure 1(c) shows the case
where the text simultaneously contains both types of modifications.
Overall, all the examples above suggest that simply utilizing the
global or local representation of the reference image for query
composition may lead to suboptimal performance. Motivated by
this, we propose to incorporate both local-wise and global-wise
compositions to better adapt to the diverse modification demands.

However, jointly modeling the local-wise and global-wise
compositions for the task of CTI-IR is non-trivial due to the
following two facts. 1) In most cases, there are only a few words or
phrases that directly relate to the modification in the unstructured
natural language text, like “black” and “more professional” in the
case of Figure 1(c). Moreover, different words tend to refer to
different regions of the reference image. Therefore, how to perform
the fine-grained text-image composition from both local-wise and
global-wise perspectives is a crucial challenge. And 2) although
a given modification may be more suitable to be processed with
either the local-wise or the global-wise composition, it in a sense
inevitably involves compositions of both sides. For example, apart
from the global abstract modification, “less revealing” also embraces
some concrete local attribute changes, like extending the sleeve
length and making the neckline higher. Moreover, since both
composition manners correspond to the same target image, there
should be certain latent consistency between the two composition
ways. Consequently, how to seamlessly link both sides to take
advantage of the underlying consistency between them forms a
tough challenge.

To address the aforementioned challenges, we present a
Comprehensive Linguistic-Visual Composition Network, dubbed
as CLVC-Net, for image retrieval. As shown in Figure 2, CLVC-Net
consists of four key modules: image/text encoding, fine-grained
local-wise composition, fine-grained global-wise composition, and
mutual enhancement. The first module works on extracting the
intermediate representation of the image and text with two separate
Convolution Neural Networks (CNNs) [24] and Long Short-Term
Memory (LSTM) networks [15], respectively. The underlying
philosophy of using two independent image/text encoders is to
facilitate the following two split composition modules, where
we argue that mingling these two types of compositions in one
module may hurt the performance with an entangled optimization
goal. The second and third modules of CLVC-Net devote to first
capturing the fine-grained image-text alignments by corresponding
attention modules, and then fulfilling the multi-modal compositions
by respective affine transformations. Ultimately, the fourth module
targets at distilling knowledge from one composition module to
guide the other one in a mutual learning manner, where both the
target ranking-level and the intermediate feature-level knowledge
is extracted. Once CLVC-Net converges, the outputs of the two
composition modules will be fused as the final query representation,
which can be used for the target image retrieval.

Our main contributions can be summarized in three points:

• To the best of our knowledge, we are the first to unify
the global-wise and local-wise compositions with mutual
enhancement in the context of CTI-IR.

• We devise two affine transformation-based attentive com-
position modules, towards the fine-grained multi-modal
compositions for both angles.

• Extensive experiments conducted on three real-world
datasets validate the superiority of our model. As a byprod-
uct, we released the codes to benefit other researchers1.

The remainder of this paper is organized as follows. Section 2
briefly reviews the related work. Section 3 details the proposed
CLVC-Net. The experimental results and analyses are presented in
Section 4, followed by the conclusion and future work in Section 5.

2 RELATEDWORK
Our work is closely related to composing text and image for image
retrieval (CTI-IR) and mutual learning.

2.1 CTI-IR
The early stage of CTI-IR [1, 41, 44] mainly focuses on the attribute
manipulation of the reference image, where the modification text
directly specifies the concrete attribute that needs to bemanipulated.
In particular, Zhao et al. [44] proposed a memory-augmented
attribute manipulation network, where a memory block is
introduced to store all the attribute template representations,
and the corresponding attribute representation and the reference
image representation will be fused to search the target image.
Differently, Yang et al. [41] presented a generative attribute
manipulation scheme for fashion retrieval, where a prototype image
that meets the attribute manipulation requirements is synthesized
by Generative Adversarial Networks to enhance the target item
retrieval. Although previous studies have achieved remarkable
success, they mainly restrict the user’s modification to a set of
pre-defined attributes, which limits their applications.

Towards this end, Vo et al. [37] proposed a new research field,
composing natural language based text and image for image
retrieval, which has drawn increasing research attention. Generally,
according to the multi-modal fusion manner, existing efforts can be
classified into two groups: local-wise and global-wise composition
methods. The former [4, 16, 42] obtains the composed query
representation by composing modification text representation with
the local visual descriptor of the reference image. For example, to
adaptively fulfil the multi-modal composition, VAL [4] fuses the
text representation with the local feature maps of the reference
imagewith an attentionmechanism, and introduces the hierarchical
matching regularization between the composed query represen-
tations and the target representations to enhance the retrieval
performance. In contrast, the latter ones fulfil the modification
over the global representation of the reference image. One typical
example is TIRG [37], which fuses the global representation of the
reference image and the text representation with a gated residual
connection. Although these efforts have made prominent progress,
facing the diverse modification needs that include both concrete
attribute changes and abstract property adjustments, they are
incompetent to achieve the optimal performance for CTI-IR.
1https://site2750.wixsite.com/clvcnet.
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Notably, the recently proposed DCNet [22] incorporates both
the local and global features of the reference image for composition.
However, it simply cascades the global and local features to derive
a more robust representation for the reference image. Beyond that,
we design two split subnetworks to fulfil the fine-grained local-wise
and global-wise compositions, respectively. Moreover, these two
subnetworks are mutually enhanced by sharing knowledge to each
other during the alternative optimization.

2.2 Mutual Learning
Knowledge distillation [14, 27, 35] is an effective and widely-used
technique to transfer knowledge from a teacher network to a
student network. This idea is first introduced by Hinton et al. [14]
in the context of transferring knowledge from a large cumbersome
model to a small one. Essentially, one key of knowledge distillation
is the existence of the teacher network that possesses knowledge
to guide the student network. However, in practice, there can be no
explicit teacher but only students. Towards this, Zhang et al. [43]
proposed the mutual learning, which aims to distill knowledge
between students by pushing them to learn collaboratively and
teach each other. Since then, mutual learning gets many researchers’
attention. For example, Luo et al. [26] adopted mutual learning in
person re-identification to boost model performance, where a set
of student models are enforced to transfer knowledge to each other.
In addition, Chan et al. [3] proposed the inconsistency loss for
multi-task learning, which essentially shares the same loss function
format with [43]. Inspired by these successful applications of mutual
learning, in this work, we propose our mutual enhancement module
to encourage the two composition modules in our model to learn
collaboratively from both target ranking-level and feature-level and
further boost the performance.

3 METHODOLOGY
In this section, we first formulate the problem and then detail the
proposed CLVC-Net for image retrieval.

3.1 Problem Formulation
In this work, we aim to solve the CTI-IR problem, which can be
formally defined as given a multi-modal query of a reference image
and its modification text, we need to retrieve its corresponding
target image from a set of gallery images. In light of this, it is
essential to learn an accurate representation of the multi-modal
query, i.e., a composed query, which can be used for the target
image retrieval. Suppose that we have a set of triplets, denoted
as D =

{
(xr , tm, xt )i

}N
i=1, where xr is the reference image, tm is

the modification text, xt is the target image, and N is the total
number of triplets. Based on D, we aim to optimize a multi-modal
composition scheme, which is able to learn the latent space where
the representation of the multi-modal query (xr , tm ) and that of
the target image xt should be close. Formally, we have,

H(xr , tm ) → F (xt ), (1)

whereH represents the transformation formapping themulti-modal
query to the latent space, while F denotes that for the target image.

3.2 CLVC-Net
As the major novelty, due to the concern that the text may
refer to diverse modifications ranging from the concrete attribute
changes to highly abstract visual property adjustments, we
propose a Comprehensive Linguistic-Visual Composition Network
(CLVC-Net) for image retrieval, as shown in Figure 2. It consists
of four key modules: (a) image/text encoding, (b) fine-grained
local-wise composition (FLC for short), (c) fine-grained global-wise
composition (FGC for short), and (d) mutual enhancement. Firstly,
the reference image and modification text are encoded by image
encoder and text encoder, respectively (described in Section 3.2.1).
Secondly, the intermediate representations are processed by the FLC
and FGC modules to obtain the composed query representations,
respectively (detailed in Sections 3.2.2 and 3.2.3). Last but not least,
the FLC and FGC modules are mutually enhanced by sharing
knowledge with each other (explained in Section 3.2.4). Once
CLVC-Net gets converged, the outputs of the two composition
modules will be fused as the final query representation for the target
image retrieval. We now detail each module of our CLVC-Net.

3.2.1 Image/Text Encoding. As two modalities are involved, we
first introduce the encoding of each modality.

Image Encoding. Regarding the image representation, we adopt
the widely used CNNs, which have obtained remarkable success
in many computer vision tasks [6, 8, 13, 17, 39, 40]. As to
facilitate the final mutual enhancement between the FLC and
FGC, we employ two separate CNNs as the image encoders for
different composition perspectives, denoted as CNNL and CNNG ,
respectively. Specifically, the intermediate representations for the
reference image and the target image can be given as follows,{

XL
r = CNNL (xr ) ,XG

r = CNNG (xr ) ,

XL
t = CNNL (xt ) ,XG

t = CNNG (xt ) ,
(2)

where XL
r ∈ RC×H×W and XG

r ∈ RC×H×W refer to the reference
image feature maps to be processed by the following FLC and
FGC modules, respectively. While XL

t ∈ RC×H×W and XG
t ∈

RC×H×W can be treated as the corresponding target ground truth
representations. C × H ×W is the shape of feature maps.

Text Encoding. Similar to existing studies [4, 7, 37], to mine
the sequential relationships among the words within the text, we
use LSTMs as the text encoders2. Different from existing studies
that mainly focus on the sentence-level text representation, we
explore the word-level intermediate representations to facilitate
the fine-grained image-text composition. Similar to the image
encoding, we utilize two separate LSTMs, i.e., LSTML and LSTMG ,
to get the text representations for FLC and FGC, respectively.
Formally, the modification text representations can be obtained
as follows, {

TLm = [hL1 , · · · , h
L
U ] = LSTML (tm ) ,

TGm = [hG1 , · · · , h
G
U ] = LSTMG (tm ) ,

(3)

where hLi ∈ RD and hGi ∈ RD are the hidden vectors of the i-th
word yielded by LSTML and LSTMG , respectively. TLm ∈ RD×U

2Before feeding into the LSTM, the text is first tokenized into standard vocabularies.
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Figure 2: The proposed CLVC-Net consists of four key modules: (a) image/text encoding, (b) fine-grained local-wise composition (FLC), (c)
fine-grained global-wise composition (FGC), and (d) mutual enhancement.

and TGm ∈ RD×U are the text representations to be processed by
the two composition modules.U is the number of words in the text.

3.2.2 Fine-grained Local-wise Composition (FLC). As aforemen-
tioned, the core task of CTI-IR can be formulated as learning the
latent representation of the multi-modal query. In a sense, this goal
can be achieved by transforming the reference image to the target
image conditioned on the modification text. Therefore, to learn
the latent representation of the multi-modal query, we resort to
the affine transformation, which has been proven to be effective in
many conditional image synthesis tasks [5, 25, 30]. Formally, the
FLC can be formulated as follows,

X̃L
q = γ

L ⊙ XL
r + β

L, (4)

where X̃L
q ∈ RC×H×W denotes the local-wise composed query

representation, γL ∈ RC×H×W and βL ∈ RC×H×W are the
to-be-learned affine parameters, modulating the given reference
image by scaling and shifting operations, respectively. ⊙ denotes
the Hadamard element-wise product.

Instead of directly extracting affine parameters from the textual
representation like existing methods [25, 31], we argue that it is
necessary to jointly consider the reference image and modification
text. The underlying philosophy is rather straightforward as even
for the same modification requirement, like changing the sleeve
length, different reference images can involve different scaling or
shifting operations. In other words, only by combining the text and
image can we know where and how to perform the modification
over the reference image. Moreover, unlike existing work [4] that
concatenates the tiled representations of the modification text with
the feature maps of the reference image to model the pair-wise
image-text interaction, we introduce the attention mechanism to

adaptively align the image and text representation. This is due to
an intuitive fact that different spatial entries in the feature maps
correspond to different textual semantics. Specifically, to facilitate
the attention weight calculation, we first use the 1 × 1 convolution
layer to transform each entry-wise feature map, i.e., XL

r (:, i, j), into
the same space of the modification text representation as follows,

X̂L
r = Conv1

(
XL
r

)
, (5)

where X̂L
r ∈ RD×H×W denotes the transformed feature maps. Then,

to derive the weight distribution over all words for each spatial
entry, we perform the convolution operation over all word-level
textual representations with each spatial-wise feature map, i.e.,
X̂L
r (:, i, j), as follows,

wL
i j = softmax

(
(TLm ⊗ X̂L

r (:, i, j))/τ
L
)
, (6)

where ⊗ denotes the convolution operation. τ L is the temperature
factor, introduced to produce a softer weight distribution.

Based on the weight distribution vector wL
i j ∈ R

U , we can get
the weighted spatial-wise textual representation as follows,

êi j =
U∑
ℓ=1

wL
i j (ℓ) · TLm (:, ℓ), (7)

wherewL
i j (ℓ) is the ℓ-th element ofwL

i j , indicating the importance of
the ℓ-th word in the text towards the (i, j)-th featuremap. For ease of
illustration, we summarize all the weighted textual representations
for all spatial entries with T̂Lm ∈ RD×H×W , where T̂Lm (:, i, j) = êi j .

Ultimately, we concatenate the transformed image feature maps
X̂L
r and theweighted textual representations as T̂Lm over the channel

dimension. Thereafter, we feed the concatenated representations



to two convolutional networks to obtain the scaling and shifting
parameters γL and βL as follows,

γL = F L
дamma

( [
X̂L
r , T̂

L
m

] )
,

βL = F L
beta

( [
X̂L
r , T̂

L
m

] )
,

(8)

where convolutional networksF L
дamma andF L

beta are implemented
with the inception convolution layers for their superior capability
of representation learning [36].

Local-wise Metric Learning. To push the local-wise composed
query one close to its target one in the latent space, we resort to the
batch-based classification loss [37], which has shown compelling
success in CTI-IR. Essentially, the batch-based classification loss
encourages the ground truth target representation to be the closest
one towards the composed query representation, while all the other
candidates in the batch are treated as negative samples.

Specifically, we first transform the local-wise composed query
representation and target representation of each triplet, i.e., X̃L

q and
XL
t , into the vector forms, denoted as f̃Lq and fLt , with a pooling

layer [32] followed by a fully-connected layer, respectively. Then
according to the batch-based classification loss, we have,

Llc =
1
B

B∑
i=1

− log


exp
{
cos

(
f̃Lqi , f

L
ti

)
/µL

}
∑B
j=1 exp

{
cos

(
f̃Lqi , f

L
t j

)
/µL

}  , (9)

where f̃Lqi and fLti stand for the local-wise composed query
representation and the target representation of the i-th triplet
sample in the batch, respectively. B is the batch size, and cos(·, ·)
denotes the cosine similarity function. µL is the temperature factor.

Due to the concern that the pooling operation may get some
discriminative feature lost, we introduce an extra perceptual loss
that is widely used in the neural style transfer [21] to further
regulate the composed query feature maps to be close to its target.
Specifically, the perceptual loss Llp is defined as follows,

Llp =
1
B

B∑
i=1

1
C × H ×W




X̃L
qi − XL

ti




2
2
, (10)

where X̃L
qi and XL

ti denote the intermediate feature maps of the
composed query and that of its target image in the i-th triplet
sample. C × H ×W is the feature map shape.

3.2.3 Fine-grained Global-wise Composition (FGC). FGC follows
the similar paradigm with the FLC, except that, in this part we
focus on the alignment between the modification text and the global
representation of the reference image rather than the local feature
maps. Intuitively, we can attach each word representation with
the global vector of the reference image to explore the pair-wise
text-image interaction and based on that to learn the scaling and
shifting parameters for the FGC. However, this manner overlooks
the fact that the sentence-based modification may involve multiple
modification aspects, and each aspect can interact with different
overviews of the reference image. As can be seen from Figure 1(b),
the modification of more elegant may refer to a stylistic overview
of the clothing, while less revealing may point to the overview
pertaining to the garment length. Accordingly, beyond that, we
propose to introduce an exclusive global feature vector for each

word of the modification text, which is derived by adaptively
summarizing the representations of all spatial entries.

Similar to the FLC, we first transform the feature maps XG
r ∈

RC×H×W to X̂G
r ∈ RD×H×W with a 1 × 1 convolution layer, to

facilitate the weight map calculation. Then we convolve the image
representation X̂G

r with the o-th word representation at each spatial
entry as follows,

WG
o = softmax

(
(X̂G

r ⊗ TGm (:,o))/τG
)
, (11)

where τG is the temperature factor for smoothing the weight
distribution. Intuitively, each element of the weight map WG

o refers
to the importance of the corresponding spatial entry of the feature
map towards theo-thmodificationword. Accordingly, we can derive
the adaptive global representation xGo for the o-th word as follows,

xGo =
W∑
i=1

H∑
j=1

WG
o (i, j) · X̂G

r (:, i, j). (12)

Then we align each word representation with the corresponding
global image representation, and derive the γG and βG parameters
for the global affine transformation as follows,

γG = FG
дamma

( [
X
G
r ,T

G
m

] )
,

βG = FG
beta

( [
X
G
r ,T

G
m

] )
,

(13)

where X
G
r = [xG1 , x

G
2 , · · · , x

G
U ] ∈ RD×U . Similar to the FLC,

both FG
дamma and FG

beta are implemented with the inception
convolution layers. Ultimately, the FGC can be fulfilled by the
following transformation,

X̃G
q = γ

G ⊙ X
G
r + β

G , (14)

where X̃G
q ∈ RD×U stands for the global-wise composed query

representation.
Global-wise Metric Learning. Similar to the local-wise metric

learning, we also adopt the batch-based classification loss. Incor-
porating the sample index subscript, for clear illustration, the loss
can be formulated as follows,

Lдc =
1
B

B∑
i=1

− log


exp
{
cos

(
f̃Gqi , f

G
ti

)
/µG

}
∑B
j=1 exp

{
cos

(
f̃Gqi , f

G
t j

)
/µG

}  , (15)

where f̃Gqi and fGti are the global-wise composed query vector and
target vector for the i-th triplet sample, which can be derived from
the corresponding global-wise composed query representation
X̃G
qi ∈ RD×U and target representation XG

ti ∈ RC×H×W by the
pooling layer [32] followed by a fully-connected layer, respectively.

3.2.4 Mutual Enhancement. As aforementioned in the Introduc-
tion, in a sense, although each modification may be more suitable to
be handled by either the local-wise composition or the global-wise
composition, it can still involve both the local modification and
the global modification. As both composition manners refer to the
same target image, there should be certain intrinsic consistency
between the two composition modules. In light of this, we argue
that if a given multi-modal query is easier to be processed by
one composition manner, then the knowledge achieved by that
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Figure 3: Mutual enhancement between two composition modules.

composition manner can be used for guiding the other one’s
learning. Propelled by this, instead of directly merging the losses of
the FLC and FGC modules to optimize our CLVC-Net, we adopt the
idea ofmutual learning [43] andmake the twomodules alternatively
share knowledge to each other. In particular, we enforce the two
composition modules to mimic each other in terms of not only the
final target ranking but also the intermediate features. Figure 3
illustrates the workflow of our mutual enhancement module.

On the one hand, we first take the by-product of the afore-
mentioned batch-based classification loss, and get the normalized
similarity between the i-th local-wise/global-wise composed query
and j-th local-wise/global-wise target image as follows,

pZi j =
exp

{
cos

(
f̃Zqi , f

Z
t j

)
/νZ

}
∑B
j=1 exp

{
cos

(
f̃Zqi , f

Z
t j

)
/νZ

} ,Z ∈ {L,G}, (16)

where νZ refers to the temperature factor. In this way, we can
get the local-wise and global-wise batch-based target similarity
distribution as pLi = [pLi1,p

L
i2, · · · ,p

L
iB ] and pGi = [pGi1,p

G
i2, · · · ,p

G
iB ],

respectively. Then to encourage the ranking-level consistency
between the two composition modules, we employ Kullback Leibler
(KL) Divergence between pLi and pGi . Specifically, due to the

asymmetry of the KL divergence, we use DKL

(
pGi ∥pLi

)
to optimize

the local-wise network, while DKL

(
pLi ∥pGi

)
is used to train the

global-wise one. Taking the optimization of local-wise network as
an example, we have,

L
(G→L)
rank =

1
B

B∑
i=1

DKL

(
pGi ∥pLi

)
=

1
B

B∑
i=1

B∑
j=1

pGij log
pGij

pLi j
, (17)

where (G → L) denotes the knowledge transferring from global-wise
network to local-wise one. Notably, the optimization of global-wise
network can be derived in a similar manner.

On the other hand, to promote knowledge transferring, we
also introduce the feature-level consistency regularization, where
we regulate the two composition modules to output consistent
composed query representations and the target representations.
Towards this end, l2 loss is utilized as follows,

L
(G→L)
f ea = L

(L→G)

f ea =
1
B

B∑
i=1

(


f̃Gqi − f̃Lqi



2
2
+




fGti − fLti



2
2

)
. (18)

It is worth noting that although L
(G→L)
f ea and L

(L→G)

f ea share
the same loss function, their optimization targets are different,
where L

(G→L)
f ea and L

(L→G)

f ea aim to optimize the local-wise and
global-wise networks, respectively.

Ultimately, we have the following objective function for
optimizing the local-wise network,

Θ∗ = argmin
Θ

(
Llc + λLlp + η

(
L
(G→L)
rank + L

(G→L)
f ea

))
, (19)

where Θ denotes the to-be-learned parameters in local-wise net-
work, including CNNL , LSTML , and FLC. λ and η are non-negative
trade-off hyper-parameters. Similarly, the objective function for
optimizing the global-wise network can be written as follows,

Φ∗ = argmin
Φ

(
Lдc + η

(
L
(L→G)

rank + L
(L→G)

f ea

))
, (20)

where Φ denotes the to-be-learned parameters in global-wise
network, including CNNG , LSTMG , and FGC. η is the trade-off
hyper-parameter.

Notably, once our CLVC-Net is well-trained, we will rank the
gallery images by jointly evaluating their cosine similarities to both
local-wise and global-wise composed query representations, which
are defined similarly as Eqns. (9) and (15), respectively.

4 EXPERIMENT
In this section, we first give the experimental settings and then
detail the experiments conducted on three real-world datasets by
answering the following research questions.

• RQ1: Does CLVC-Net surpass state-of-the-art methods?
• RQ2: How does each module affect CLVC-Net?
• RQ3: How is the quantitative performance of CLVC-Net?

4.1 Experimental Settings
4.1.1 Datasets. In the domain of CTI-IR, there have been several
public datasets, including cube-oriented synthesized ones and
fashion-oriented realistic ones. To evaluate the practical value
of our model, we particular chose three real-world datasets:
FashionIQ [11], Shoes [10], and Fashion200k [12].

FashionIQ [11] is a natural language-based interactive fashion
retrieval dataset, crawled from Amazon.com and introduced for
Fashion-IQ 2020 challenge3. It contains 77, 684 fashion images
covering three categories: Dresses, Tops&Tees, and Shirts. As a
challenge dataset, only the training set of 18, 000 triplets and the
validation set of 6, 016 triplets are available.

Shoes [2] is a dataset originally collected from like.com for
the attribute discovery task, and developed by [10] with relative
caption annotations for dialog-based interactive retrieval. The
modification text in this dataset is also in the form of natural
language. Following [4], we used 10k images for training and 4, 658
images for evaluation.

Fashion200k [12] contains about 200K fashion images, each
with an attribute-like text description. Following [4, 37], we only
adopted the pair of images that has only one-word difference in
their descriptions as the reference image and target image, while
3https://sites.google.com/view/cvcreative2020/fashion-iq.

https://sites.google.com/view/cvcreative2020/fashion-iq


Table 1: Performance comparison on FashionIQ and Shoes. † indicates the results are cited from [4], while ‡ denotes that from [22]. Best
results are in boldface, while second best results are underlined.

Method
FashionIQ ShoesDress Shirt Tops&Tees Avg

R@10 R@50 R@10 R@50 R@10 R@50 R@10 R@50 R@1 R@10 R@50
Image_Only 4.96 13.34 5.40 14.13 5.10 13.26 5.15 13.58 7.38 33.23 58.73
Text_Only 6.89 21.67 8.54 26.25 8.82 27.64 8.08 25.19 0.57 5.96 18.63
Concatenation 9.97 26.77 9.37 28.07 7.75 25.09 9.03 26.64 6.31 31.92 58.62
Relationship (Santoro et al. 2017)† 15.44 38.08 18.33 38.63 21.10 44.77 18.29 40.49 12.31 45.10 71.45
Film (Perez et al. 2018)† 14.23 33.34 15.04 34.09 17.30 37.68 15.52 35.04 10.19 38.89 68.30
TIRG (Vo et al. 2019)† 14.87 34.66 18.26 37.89 19.08 39.62 17.40 37.39 12.60 45.45 69.39
VAL (Chen et al. 2020)† 21.12 42.19 21.03 43.44 25.64 49.49 22.60 45.04 16.49 49.12 73.53
DCNet (Kim et al. 2021)‡ 28.95 56.07 23.95 47.30 30.44 58.29 27.78 53.89 - 53.82 79.33
CLVC-Net 29.85 56.47 28.75 54.76 33.50 64.00 30.70 58.41 17.64 54.39 79.47

the modification text is synthesized by templates, such as “replace
red with green”. Same as [4, 37], we obtained around 172k triplets
for training and 33k triplets for evaluation.

4.1.2 Implementation Details. For the image encoder, we selected
ResNet50 [13] as the backbone, and discarded the down-sampling
between the Stage 3 and Stage 4 [38] to preserve more detailed
information in the feature map. Accordingly, the intermediate
representations of reference/target images have the shape of 2048×
14 × 14. Pertaining to the text encoder, we set the dimension of the
hidden layer in LSTM to 1024. In addition, we set the dimensions of
the composed query representations and target representations of
both composition modules as 1024. Regarding the local-wise affine
transformation parameters learning, we implemented the inception
convolution layers in Eqn.(8) with a convolution layer, which is
split into four branches with different receptive fields as in [36], and
followed by a batch normalization layer [20] and Relu activation
function. Those in the FGC follow the same structure, except that
they are constructed by 1D convolution manner.

We alternatively trained the two compositions by Adam
optimizer [23] with an initial learning rate of 0.0001, which
multiplies 0.1 at the 10-th epoch. We empirically set the batch
size as 32, trade-off hyper-parameters in Eqn.(19) and Eqn.(20) as
λ = η = 1. Temperature factors τ L and τG in Eqn.(5) and Eqn.(11)
are set to 7.0 and 4.0, respectively, while others, i.e., µL , µG , νL ,
and νG , are set to 10.0. For a fair comparison, dataset settings and
evaluation metrics are kept the same as previous efforts [4, 22].
We utilized recall at rank k (R@k) that measures the fraction of
queries for which the ground truth target is retrieved among the
top k results. All the experiments are implemented by PyTorch, and
we fixed the random seeds to ensure the reproducibility.

4.2 On Model Comparison (RQ1)
To validate the effectiveness of our method in the context of
CTI-IR, we chose the following baselines, including both naive
and state-of-the-art methods, for comparison.

• Image_Only simply takes the reference image representa-
tion as the composed query representation.

• Text_Only simply takes the modification text representa-
tion as the composed query representation.

• Concatenation feeds the concatenation of the reference
image and modification text representations to a two-layer
MLP to obtain the composed query representation.

• Relationship [34] summarizes the composed query repre-
sentation based on a set of relational features, which are
obtained by concatenating the textual features and a pair of
local-wise visual features.

• Film [31] uses affine transformation to inject the text
information into the feature maps of the reference image,
and based on which to retrieve the target image.

• TIRG [37] resorts to gating mechanism to adaptively
preserve and transform the reference image to get the
composed query representation.

• VAL [4] utilizes the attention mechanism to achieve the
preservation and transformation of the reference image. For
fair comparison, we referred its performance when no extra
textual description of the reference image is used.

• DCNet [22] wins the first place in Fashion-IQ 2020 challenge
by jointly modeling the multi-granularity features of the
reference image and modification text with a refined version
of TIRG [37], and introduces a correction network on the
difference between the reference image and target image.

• JGAN [42] utilizes a graph attention network to adaptively
compose the modification text and reference image, where
the local features of the reference image are extracted by
Faster R-CNN model [33].

• LBF [16] fulfills the task with a cross-modal attention
module, which is able to compose the local visual features
of the reference image and the word-level representations
of the modification text.

Tables 1 and 2 show the performance comparison among
different methods on the three datasets, while for JGAN [42] and
LBF [16], we only reported their performance on Fashion200k, since
they did not publish their results on the other two datasets. From
these tables, we obtained the following observations. 1) CLVC-Net
consistently outperforms all baseline methods over all datasets. This
confirms the advantage of our model that incorporates both the
local-wise and global-wise composition in the context of CTI-IR. 2)
The naive methods, i.e., Image_Only, Text_Only, and Concatenation,
performworse than the other methods, demonstrating the necessity
of a proper query composition. And 3) DCNet achieves the second



Table 2: Performance comparison on Fashion200k. † and ‡ denote
the results are cited from [4] and their own papers, respectively.
Best results are in boldface, while second best are underlined.

Method R@1 R@10 R@ 50
Image_Only 3.7 18.9 37.3
Text_Only 1.8 12.5 22.5
Concatenation 9.8 33.0 52.7
Relationship (Santoro et al. 2017)† 13.0 40.5 62.4
Film (Perez et al. 2018)† 12.9 39.5 61.9
TIRG (Vo et al. 2019)† 14.1 42.5 63.8
VAL (Chen et al. 2020)† 21.2 49.0 68.8
DCNet (Kim et al. 2021)‡ - 46.9 67.6
JGAN (Zhang et al. 2020)‡ 17.3 45.3 65.7
LBF (Hosseinzadeh et al. 2020)‡ 17.8 48.4 68.5
CLVC-Net 22.6 53.0 72.2

best results on FashionIQ and Shoes, while VAL ranks the second
on Fashion200k, which to some extent implies that their methods
cannot meet the various modification demands well across different
datasets and suffer from the limited generalization ability. This
further reflects the superiority of our CLVC-Net, which is able to
cater for various modification demands.

4.3 On Ablation Study (RQ2)
To verify the importance of each module in our model, we also
compared CLVC-Net with its following derivatives.

• w/ Avgpool: To study the effect of the fine-grained
multi-modal composition strategy, we replaced the attention
mechanism with the simple average pooling to get T̂Lm and
X
G
r , leaving all words or spatial entries being concatenated

with the same visual/textual representation.
• w/o Mutual: To explore the effect of the mutual enhance-
ment, we removed the knowledge distillation between two
composition modules by setting η=0.

• w/o Mutual-ranking: To investigate the effect of the
ranking-level knowledge in mutual enhancement, we re-
moved the KL Divergence losses L(G→L)

rank and L
(L→G)

rank .
• w/oMutual-feature: To getmore insight into the feature-level
knowledge inmutual enhancement, we removed the l2 losses
L
(G→L)
f ea and L

(L→G)

f ea .
• Local-wise_Only and Global-wise_Only: To check the
importance of both composition modules, we removed each
module from the training framework, respectively.

• Local-wise_Only+ and Global-wise_Only+: To verify
whether the two composition modules are able to absorb
knowledge from each other, we trained the network with mu-
tual enhancement, but only used the local-wise/global-wise
composed query representation for retrieval.

Table 3 shows the ablation results of our CLVC-Net. From
this table, we gained the following observations. 1) w/ Avgpool
performs worse than our CLVC-Net, which proves the necessity
of incorporating the fine-grained multi-modal composition. 2)
CLVC-Net surpasses w/o Mutual-ranking, indicating that mutual
enhancement is indeed helpful for integrating the two composition
modules. 3) Both w/o Mutual-ranking and w/o Mutual-feature are

Table 3: Ablation study on FashionIQ and Shoes. The results on
FashionIQ are the average result of three categories.

Method FashionIQ (Avg) Shoes
R@10 R@50 R@10 R@50

w/ Avgpool 29.10 57.06 53.05 78.02
w/o Mutual 28.81 56.25 51.86 77.11
w/o Mutual-kl 29.06 57.07 53.42 78.56
w/o Mutual-feature 28.94 56.34 53.05 78.05
Local-wise_Only 24.67 52.17 47.49 75.01
Global-wise_Only 25.20 50.91 47.80 73.10
Local-wise_Only+ 28.19 56.06 52.26 78.30
Global-wise_Only+ 29.51 57.31 53.34 78.33
CLVC-Net 30.70 58.41 54.39 79.47

superior to w/o Mutual, which suggests that it is essential to con-
sider both ranking-level and feature-level knowledge in the mutual
enhancement to gain the better knowledge transferring. 4) Com-
pared to other derivatives, Local-wise_Only and Global-wise_Only
present the worst performance, demonstrating that using only
local-wise or global-wise composition module is suboptimal
for CTI-IR. And 5) Local-wise_Only+ and Global-wise_Only+
significantly outperform Local-wise_Only and Global-wise_Only.
This reconfirms the benefit of making the two composition modules
share knowledge with each other.

To gain a deeper understanding of the superiority of our
CLVC-Net over Local-wise_Only and Global-wise_Only, we visu-
alized the word cloud based on the modification text of testing
samples that are correctly retrieved at the top one place by
different methods. Notably, to avoid the frequency bias, we
normalized the frequency of eachmodification word in the correctly
retrieved samples by its overall frequency in the test set. From
Figure 4, we observed that as compared to abstract visual property
changes, Local-wise_Only performs better at tackling the concrete
attributes modifications, such as “bule” and “sleeves” on FashionIQ,
and “closures” on Shoes. Conversely, Global-wise_Only shows
superiority in processing the abstract visual property changes, like
the style word “American” on FashionIQ and “style” on Shoes, rather
than concrete attributes modifications. Meanwhile, we noticed
our CLVC-Net performs well in both concrete modifications,
e.g., “strips” on FashionIQ and “closures” on Shoes, and abstract
modifications, e.g., “deeper” on FashionIQ and “style” on Shoes.
This indicates that beyond Local-wise_Only and Global-wise_Only,
our CLVC-Net is capable of handling diverse modifications,
which proves the necessity of incorporating both local-wise and
global-wise compositions in solving the CTI-IR task again.

Local-wise_Only Global-wise_Only CLVC-Net

(a) 

(b)

Figure 4: Comparison of word cloud on (a) FashionIQ and (b) Shoes.



has a larger logo and is more colorful and stylishhas a larger logo and is more colorful and stylish
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is colorful and stylish

reference image target image

have three bands of furhave three bands of fur

have three bands of fur

reference image target image

(b) A sample from FashionIQ.

Figure 5: Attention visualization.

4.4 On Case Study (RQ3)
4.4.1 Attention Visualization. We visualized the attention mech-
anism in the FLC and FGC with two testing samples in Figure 5,
where both the word weight distribution in FLC and spatial weight
map in FGC are provided. Notably, to provide the more meaningful
word weight calculation, we visualized the average word weight
distribution of the corresponding modification region rather than
a single spatial entry point. Meanwhile, for ease of illustration,
we presented the spatial weight maps for the most informative
modification words. As can be seen from Figure 5(a), the top part
of the boot pays more attention to the word “fur”, while the middle
part of the boot further emphasized words “three” and “bands”.
Checking the reference and target images, we found the word
weight distributions are reasonable. Meanwhile, we observed that
the word “three” and “bands” are most related to the middle region
of the boot, while “fur” concerns the top of the bootmost, which part
is does made of fur. Regarding that in Figure 5(b), the “larger logo”,
“colorful”, and “stylish” are identified as the most informative words
corresponding to the middle top part of the T-shirt. Furthermore,
the word “logo” focuses on the pattern part of the T-shirt, while the
words “colorful” and “stylish” emphasize nearly the whole T-shirt.
Combining with the reference and target images, these observations
are also meaningful. Overall, we can confirm the effectiveness of
CLVC-Net in capturing the fine-grained text-image alignment.

4.4.2 Image Retrieval Visualization. Figure 6 illustrates several
CTI-IR results obtained by our CLVC-Net on three datasets. Due to
the limited space, we reported the top 5 retrieved images, and used
blue and green boxes to denote the reference and target images,
respectively. As shown in Figure 6(a), the target images are ranked
at the first places, verifying that CLVC-Net could handle the single
attribute modification well. Regarding the cases of FashionIQ and
Shoes, where the modification text is human-written, and involves
multiple modification aspects including both concrete attributes
and abstract visual properties, our model still work well for some
cases, as shown in the first row of Figure 6(b) and Figure 6(c).
Meanwhile, we also noticed some failing examples, where the target
images are not ranked at the top places. For example, in the second
row in Figure 6(b), CLVC-Net misses the target image in the top
5 retrieved images. Nevertheless, checking the ranking list, we
noticed that all the top 5 retrieved items meet the requirement of
the modification text over the reference image. As for the second
example in Figure 6(c), the target image with the “tiger print” is
ranked fourth behind those with “snake print” and “leopard print”.
This may be due to the fact that these features are so rare in the
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Figure 6: Illustration of several CTI-IR results obtained by our
CLVC-Net on three datasets.

training set that the model fails to fully distinguish them. Overall,
these observations verify the practical value of CLVC-Net.

5 CONCLUSION AND FUTUREWORK
In this work, we present a novel comprehensive linguistic-visual
composition network to tackle the challenging CTI-IR task, which
seamlessly unifies the fine-grained local-wise composition and
fine-grained global-wise composition with mutual enhancement.
In particular, we propose two affine transformation-based attentive
composition modules, corresponding to the two compositions,
respectively. Moreover, to capture the underlying consistency be-
tween the two compositions, we introduce the mutual enhancement
strategy to make the two compositions share knowledge with
each other. Extensive experiments have been conducted on three
public datasets, and the results demonstrate the effectiveness of our
method. Furthermore, to gain a deep insight into our approach, we
performed sufficient ablation studies, and visualized the case studies.
As expected, we found that the local-wise composition manner
does well in concrete attribute changes, while the global-wise
one is adept at abstract visual property adjustments. Nevertheless,
both of them cannot meet the diverse modification demands well,
comfirming the necessity of simultaneously incorporating the
two compositions. Additionally, we noticed that using mutual
enhancement can significantly boost each composition module’s
performance, which confirms that the knowledge mutually
transferred is helpful to CTI-IR. To take it further, we will extend
our method to solve the multi-turn interactive image retrieval task,
which is an essential problem in the multimodal dialogue systems.
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